东莞市兆科电子材料科技有限公司

兆科 · 导热材料解决方案综合服务商让散热变得更简单

400-800-1287

136-6983-5169

您的当前位置:首页 >全站搜索>搜索:变化

搜索结果

提高IGBT模块散热设计,推荐TIC导热相变化材料

提高IGBT模块散热设计,推荐TIC导热相变化材料

IGBT散热好坏将直接影响整机的正常运行工作,推荐TIC800G导热相变化材料,拥有良好的热传导率:5.0W/MK,相变温度50℃~60℃,工作温度-25℃~125℃,无论是膏状还是片状,都拥有等同于导热硅脂的界面浸润性能,而且表现出更低的热阻抗,解决大功率IGBT模组的热传导问题,提供IGBT的可靠性。
CPU芯片涂抹导热硅脂会风干吗?哪家好?

CPU芯片涂抹导热硅脂会风干吗?哪家好?

兆科TIG780系列是满足ROHS要求的导热硅脂,拥有良好的搅拌性与触变性,完全填补芯片表面看不到的间隙,创造低热阻,达到良好的导热散热效果,也不会因时间的变化而风干。K值从1.0~5.6W/mK,满足不同导热需求。
导热界面材料帮助变频器散热“快马加鞭”

导热界面材料帮助变频器散热“快马加鞭”

变频器散热推荐:导热凝胶不会出现变干现象,可以将发热器件与PCB板保持密切接触,起到导热、绝缘、耐温、防震的作用。导热系数从:1.5~7.0W/mK,防火等级:UL94-V0。导热相变化材料也是提升变频器可靠性的优选,材料应用后会在室温下保持固态,直到设备的工作热量使其浸润整个界面,且不会溢出。导热系数从:0.95~5.0W/mK,低热阻。
TIC导热相变化材料的工作原理及产品特质

TIC导热相变化材料的工作原理及产品特质

TIC导热相变化材料是热强化聚合物,设计了把功率消耗型电子设备和与之相连的散热器之间的热阻降到很低。该热阻小的通道优化了散热器的性能、改善了微处理器、内存模块DC/DC转换器和功能模块的可靠性。
哪些原因会导致有机硅粘着剂在固化后不平整?

哪些原因会导致有机硅粘着剂在固化后不平整?

有机硅粘着剂主要功能有材料之间的粘接、固定、填充、密封等应用,而对固化后表面有特别要求的应用大多数是起填充保护,一般要求是平整,如:照明行业,如果表面不平整,产生的光就会发生变化。那么,哪些情况会导致有机硅粘着剂在固化后出现表面不平呢?
LED COB光源芯片散热,推荐哪款导热材料?

LED COB光源芯片散热,推荐哪款导热材料?

LED COB光源芯片散热推荐兆科TIC800G导热相变化材料,其材料厚度可做到0.127~0.5mmT,导热系数可达5W/mK,可按客户要求加工任意规格,客户直接组装即可。
导热相变化解决变频器散热同时,还能提升其寿命及可靠性

导热相变化解决变频器散热同时,还能提升其寿命及可靠性

导热相变化材料是指温度不变的情况下而改变物质状态并能提供潜热的物质,转变物理性质的过程称为相变过程,这时导热相变化将吸收或释放大量的潜热。下面选用兆科生产的2.5W/mK导热率的导热相变化,材料应用后会在室温下保持固态,直到设备的工作热量使其“熔化”并浸润整个界面,且不会出现有泵出的风险。且测试表示,导热相变化材料的性能优于硅脂材料,提升了变频器整体的可靠性与寿命。
这3款导热材料是变频器散热的不错选择

这3款导热材料是变频器散热的不错选择

变频器散热推荐TIF导热凝胶,不会变干,可以将发热器件与PCB板保持密切接触,可以起到导热、绝缘、耐温、防震的作用。TIC导热相变化材料,也是提升变频器可靠性的优选,材料应用后会在室温下保持固态,只到设备的工作热量使其浸润整个界面。TIS导热绝缘片,可达到良好的绝缘效果,既能绝缘又可达到导热的效果。
超简易的导热相变化操作使用方法

超简易的导热相变化操作使用方法

导热相变化是一种高性能低熔点相变化导热界面材料。在温度50℃开始软化并流动,填充散热片和积体电路板的接触介面上细微不规则间隙,以达到减小热阻的目的。
导热界面材料可帮助UPS电源散热且确保供电稳定

导热界面材料可帮助UPS电源散热且确保供电稳定

导热硅脂和导热相变化是比较常用在CPU电源中与散热器相连接将所产生的热量快速的疏导出去的,避免对产品造成不可逆的损失。但是在电源行业应用中,除产品的散热外我们还得考虑到绝缘问题,所以,兆科还推荐TIS导热绝缘片,它具有热阻低、击穿电压、带基材、抗撕裂、抗穿刺及良好的绝缘强度等特点。
兆科为你介绍导热相变化的特性以及它的工作原理

兆科为你介绍导热相变化的特性以及它的工作原理

导热相变化是能够在某一配方设计温度以上,由固态转变为液态的导热界面材料,业内称之为:导热相变材料。导热相变化是热量增强聚合物,设计用于使功率消耗型电子器件和与之相连的散热片之间的热阻力降低到很小,而热阻小的通道使散热片的性能达到非常佳的状态。
AI智能电子时代,常用的导热散热材料有哪些呢?具有哪些优势?

AI智能电子时代,常用的导热散热材料有哪些呢?具有哪些优势?

AI智能时代的来临,智能电子产品处理器主频将不断地提高,核心数量也会不断增加。对电子产品需要优化结构设计,再搭配选择性良好的导热散热材料来快速的将大量的热源传递出去,才可有效解决。那么常用的导热散热材料有哪些呢?导热硅胶片、导热硅脂、导热凝胶、导热相变化材料、导热石墨片。
兆科科技可为5G小基站提供散热以及电磁干扰解决方案

兆科科技可为5G小基站提供散热以及电磁干扰解决方案

而小基站一般是封闭的自然散热结构,热量会先传到外壳,再由外壳传导至空气,一般是通过降低芯片与外壳的温差来解决其散热问题,而芯片和壳体之间存在间隙,这会影响热量传递效果,这就需要借助导热界面材料来解决。导热散热方案推荐:导热硅胶片、导热相变化材料、导热凝胶,均可有效降低界面热阻,具有热阻小、传热效率高等特性。电磁干扰方案推荐:吸波材料,在低压力下可实现低界面热阻性能和电磁吸波性能,能够填充间隙,完成发热部位与散热部位间的热传递和电磁器噪音吸收;同时还起到绝缘,减震,密封等作用,满足设备小型化及超薄化的设计要求。
服务器散热方案使用这几款导热材料不仅能提高效率还能保护部件

服务器散热方案使用这几款导热材料不仅能提高效率还能保护部件

服务器不管是采用风冷还是液冷的方式,都需要导热材料来辅助散热。通过导热硅胶片、导热硅脂、导热相变化都可填充主芯片的散热间隙,可以提高热量传递效率,进一步发挥散热系统的散热作用保护重要部件。
高功率芯片散热应用TIC导热相变化材料

高功率芯片散热应用TIC导热相变化材料

TIC导热相变化在室温下为固态,也就是片状。导热相变化方便操作,当温度达到指定范围内就会变软而且处于流体状,这种完全填补界面空洞与器件和散热片间空隙的才能,使得导热相变化优于非流动弹性体或者传统导热垫片,而且取得类似于导热硅脂的功能,可以添补空隙中细微的坑洞,达到导热大化。
光伏逆变器散热成困扰?兆科导热硅脂与导热绝缘片为其轻松解决

光伏逆变器散热成困扰?兆科导热硅脂与导热绝缘片为其轻松解决

逆变器内部采用导热界面材料把关键元件都给保护起来,容易发热的元器件用导热硅脂材料,它热阻低,导热性能好,直接与壳体连接,可防止与其他元器件被这些热量干扰导致元器件电气特性发生变化。而IGBT功率转换器件需要考虑绝缘问题,推荐使用导热绝缘片,其击穿电压高、有基材、抗撕裂穿刺,实现高散热高绝缘。
影响有机硅导热粘着剂固化后不平整的原因在哪?

影响有机硅导热粘着剂固化后不平整的原因在哪?

有机硅导热粘着剂功能主要有材料之间的粘接、固定、填充、密封等应用,而对固化后表面有特别要求的应用大多数是填充保护,一般要求是平整,比如照明行业,如果表面不平整产生的光就会发生变化。那么,有机硅导热粘着剂在固化后表面不平是怎么回事呢?有哪些原因会造成该问题的出现呢?
导热相变化材料解决IGBT模块散热问题得心应手

导热相变化材料解决IGBT模块散热问题得心应手

导热相变化材料在50℃时会发生相变,由固态片状变成液态粘糊状。然后确保功率消耗型器材和散热器的外表够湿润,出现低热阻从而形成很好的导热通道,令其散热器达到很好的散热功能。接着改善了IGBT、CPU、图形加速器、DC/DC电源模块等功率器材的稳定性。
多款高性能导热材料为服务器散热保驾护航

多款高性能导热材料为服务器散热保驾护航

服务器内部高温度出现在CPU上,其次是内存的温度较高,而硬盘靠近进风口,其温度很低。不管是采用风冷还是液冷的方式,都需要导热材料来辅助散热。通过导热硅胶片、导热硅脂和导热相变化填充主芯片的散热间隙,可以提高热量传递效率,进一步发挥散热系统的散热作用,以此来保护重要部件。
导热相变化应用在IGBT模块散热能带来哪些好处呢?

导热相变化应用在IGBT模块散热能带来哪些好处呢?

导热相变化在50℃左右时会出现相变,由固态片状变成液态粘糊状。然后确保功率消耗型器材和散热器的外表够湿润。出现低热阻从而形成优异的导热通道,令散热器达到非常好的散热功能。接着改善了IGBT、CPU、图形加速器、DC/DC电源模块等功率器材的稳定性。